Nilai lim_(x→0)⁡ (1/x-1/(x cos⁡ x))=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 0} \ \left( \frac{1}{x} - \frac{1}{x \cos x} \right ) = \cdots \)

  1. -1
  2. -1/2
  3. 0
  4. 1/2
  5. 1

(UM UGM 2006)

Pembahasan:

\begin{aligned} \lim_{x \to 0} \ \left( \frac{1}{x} - \frac{1}{x \cos x} \right ) &= \lim_{x \to 0} \ \frac{x \cos x - x}{x^2 \cos x} \\[8pt] &= \lim_{x \to 0} \ \frac{\cos x - 1}{x \cos x} \\[8pt] &= \lim_{x \to 0} \ \frac{-2\sin^2 \frac{1}{2}x}{x \cos x} \\[8pt] &= \lim_{x \to 0} \ \frac{-2\sin \frac{1}{2}x}{x} \cdot \lim_{x \to 0} \ \frac{\sin \frac{1}{2}x}{\cos x} \\[8pt] &= -2 \cdot \frac{1}{2} \cdot \frac{\sin 0}{\cos 0} = -1 \cdot \frac{0}{1} = 0 \end{aligned}

Jawaban C.